wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – S1 0983/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - S1 Summer 2016 Mark Scheme

Ques	Solution	Mark	Notes
1(a)	$P(A \cup B) = P(A) + P(B)$	M1	Award M1 for the use of the
	= 0.7	A1	formulae in all three parts
(b)		Dí	
	$P(A \cap B) = 0.12$	B1	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	M1	
	= 0.58	A1	
(c)	$\mathbf{D}(\mathbf{A} = \mathbf{D}) = \mathbf{D}(\mathbf{A} \mid \mathbf{D})\mathbf{D}(\mathbf{D})$	MI	
(C)	$P(A \cap B) = P(A \mid B)P(B)$	M1 A1	
	= 0.1	m1	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	A1	
	= 0.6		
2(a)	$P(red) = 0.45 \times 0.03 + 0.55 \times 0.05$	M1A1	
$\Delta(a)$	$= 0.43 \times 0.03 \pm 0.03 \times 0.03$ = 0.041	A1	
	- 0.041		
(b)	0.55×0.05	DIDI	
	$P(\text{female} \text{red}) = \frac{0.55 \times 0.05}{0.041}$	B1B1	B1 num, B1 denom
	= 0.671 cao (55/82)	B1	FT denominator from (a)
3 (a)	$\mathbf{E}(Y) = 2a + b = 8$	M1A1	
	$Var(Y) = 2a^2 = 8$	M1A1	Award SC2 for correct answer
	a = 2; b = 4	A1A1	unsupported
(b)	Any statement which mentions that certain		
	values, eg 0, cannot be taken by <i>Y</i> .	B1	
4(a)(i)			
4(a)(l)	(4)		
	P(no Welsh) = $\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$ or $\frac{3}{8}$	M1	
	(3)		
	1	. 1	
	$=\frac{1}{14}$ (0.071)	A1	
	P(1 of each) = $\frac{4}{8} \times \frac{2}{7} \times \frac{2}{6} \times 6$ or $\frac{\binom{4}{1} \times \binom{2}{1} \times \binom{2}{1}}{\binom{8}{1}}$		
(;;)	$P(1 \text{ of each}) = \frac{4}{2} \times \frac{2}{7} \times \frac{2}{7} \times 6 \text{ or } \frac{(1)^2 (1)^2 (1)^2}{(2)^2}$	M1A1	
(ii)	8 / 6 (8)	WIIAI	M1A0 if 6 omitted
	(3)		
	$=\frac{2}{7}$ (0.286)		
	$-\frac{1}{7}$ (0.200)	A1	
	(7)		
(b)		M1	
	P(Jack selected) = $\frac{1}{8} + \frac{7}{8} \times \frac{1}{7} + \frac{7}{8} \times \frac{6}{7} \times \frac{1}{6}$ or $\frac{2}{8}$		
	(3)		
	$=\frac{3}{8}$ (0.375)	A1	Accept answer with no working
	8 ` ´		

Ques	Solution	Mark	Notes
5 (a)(i)	X is Poi(6) si	B1	
	$P(X=5) = \frac{e^{-6} \times 6^5}{5!}$	M1	Award M0 if no working seen or
			if tables used
(ii)	= 0.161	A1	
()	$P(X > 3) = 1 - e^{-6} \left(1 + 6 + \frac{36}{2} + \frac{216}{6} \right)$	M1A1	Award M1A0A0 if one of the
	(26)	A1	four terms is missing
	= 0.849	AI	
(b)			
(~)	Looking at the appropriate section of the table,		
	Mean = 2.4	M1A1	Award M1 for evidence of
	$t = \frac{2.4}{0.2} = 12$	A1	sensible use of table
	0.2		Accept 12 with no working
6(a)(i)	<i>X</i> is B(8,0.12) si	B1	
	$P(X < 2) = 0.88^8 + 8 \times 0.88^7 \times 0.12$	M1	Award the first M1 in (iii) if not
	= 0.752	A1	awarded in (i) for adding the six
(ii)	$P(X=2) = 28 \times 0.88^{6} \times 0.12^{2}$		probabilities
(iii)	= 0.187 $P(X > 2) = 1 - 0.752 - 0.187$	B1	
~ /	= 0.061	B1	FT from two other calculated probabilities
		21	probabilities
(b)	$E(Profit) = 0.187 \times 10 + 0.061 \times 25 - 5$	M1	M1A0 if -5 omitted
	$=-\pounds 1.61$ (Accept 1.6)	A1	FT from (a)
			Allow $0.187 \times 5 + 0.061 \times 20 -$
7(a)(i)	0.3 + 0.2 + 0.1 + a + b = 1	B1	0.752 × 5
/(a)(1)	0.3 + 0.2 + 0.1 + a + b = 1 a + b = 0.4	D1	
(ii)	$E(X) = 0.3 \times 1 + 0.2 \times 2 + 0.1 \times 3 + 4a + 5b = 2.85$	M1	
	4a + 5b = 1.85	A1	
	Solving, a = 0.15, b = 0.25	m1 A1	
(b)	u = 0.15, v = 0.25		
	The possible pairs are (1,1), (1,2), (1,3),(2,2)	B1	
	$P = 0.3 \times 0.3 + 2 \times 0.3 \times 0.2 + 2 \times 0.3 \times 0.1 + 0.2 \times 0.2$	M1A1	Award M1A0A0 if one of the
	= 0.31	A1	terms is missing or if (1,1) or (2,2) is double counted
			Award SC1 for Prob < 4 (0.21)
			or Prob = $4(0.1)$

Ques	Solution	Mark	Notes
8(a)	np = 3 giving $p = 0.06$	M1A1	
(b)	$P(X=2) = {\binom{50}{2}} \times 0.06^2 \times 0.94^{48}$	M1	
(c)	= 0.2262	A1	
	Using the Poisson table, P(X = 2) = 0.4232 - 0.1991 or $0.8009 - 0.5768$	M1	Award M0A0 for 0.2240 from
	= 0.2241 0.0021 100 100	A1	formula
	Percentage error = $\frac{0.0021}{0.2241} \times 100 < 1\%$	B1	Allow 0.2240 for this B1
9(a)(i)	$F(x) = k \int_{1}^{x} (2u - 1) du$ $= k \left[u^{2} - u \right]_{1}^{x}$	M1	M1 for the integral of $f(x)$
	$=k\left[u^2-u\right]^x$	A1	limits may be left until 2 nd line.
(ii)	=kx(x-1)	A1	
(11)	F(2) = 1	M1	Allow integration of $f(x)$ from 1
	2k = 1	A1	to 2.
	$k = \frac{1}{2}$		
(b)(i)			
	$E(X) = \int_{1}^{2} \frac{1}{2} x(2x-1) dx$	M1	M1 for the integral of $xf(x)$,
			limits may be left until 2 nd line.
	$=\frac{1}{2}\left[\frac{2x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{2}$	A1	
(ii)	= 1.58 (19/12)	A1	
	The median <i>m</i> satisfies		
	$F(m) = \frac{m(m-1)}{2} = \frac{1}{2}$	M1	Accept a geometrical argument FT $F(m)$ from (a) if it gives a
	$m^2 - m - 1 = 0$	A1	quadratic equation and an answer in [1,2]
	$m = \frac{1 \pm \sqrt{1+4}}{2}$	M1	
			Condone the absence of \pm
	m = 1.62	A1	
(iii)	P(X > 1.5) = 1 - F(1.5) = 0.625	M1 A1	FT F from (a) if possible

0983/01 GCE Mathematics S1 MS Summer 2016/LG